Lab General Info

From NeuralNetoff
Revision as of 20:58, 13 September 2016 by Nagar030 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Dr. Theoden Netoff's (Tay's Website) lab started in August 2006. Before he came to Univeristy of Minnesota, he used to be postdoctoral fellow in the Neuronal Dyanmics Lab at Boston University.

The current members in Dr.Netoff's Lab are :

  • Tyler Stigen, Graduate student in Biomedical Engineering
  • Vivek Nagaraj, Graduate Program in Neuroscience
  • Jenny Zick, Graduate Program in Neuroscience
  • Pantea Moghimi, Graduate student in Biomedical Engineering
  • Logan Grado, Graduate student in Biomedical Engineering
  • Ken Louie, Graduate student in Biomedical Engineering

Former members:

  • Abbey Holt, Graduate Program in Neuroscience
  • Sarah West, Undergrad in Neuroscience
  • Oscar Miranda-Dominguez, Graduate student in Biomedical Engineering
  • Chris Warren, Post-doc
  • Bryce Beverlin II, Graduate student in Physics
  • Jon Gonia, Undergrad in BME
  • Brian Weynand, Undergrad in BME
  • Kelvin (Fei) Chu.(Kelvin's Website)- Graduate student
  • Prathusha. - Undergraduate student
  • Eben Johnson, Undergrad in BME

In Dr.Netoff's lab, we study seizures in slices of brain tissue using patch-clamp recording and dynamic clamp techniques as well as optical imaging. We supplement our experiments with modeling of large networks of neurons to test our hypotheses in a controlled experimental condition.


Emergency Information

In case of an Emergency: Call 911 Campus police Non emergencies: 612-624-2677 Emergency preparedness If you have an injury fill out Accident Investigation Worksheet

Environmental Health and safety

[ Hasselmo Hall Building management] or e-mail Or call: Dave Lee 4-0616 (w), 612-221-8382 (cell), 952-888-9214(H), 612-510-2192 (pager) Maureen Scaglia, 5-2967, 612-685-2205 (cell), 612-798-0485(H), 312-510-1544(pager)

Github Account:

Code for experiments, data analysis, and computational modeling can be found on the lab Github page. University login is required.

Patch Clamp Recordings:

Using a micropipette of glass pulled to a very fine tip, we can record from a neuron with such high fidelity we can measure the synaptic inputs impinging on the neuron. By patching two cells simultaneously and recording seizures, I discovered that synchrony between cells decreased during seizures contrary to the common dogma that seizures are œhypersynchronous neuronal activity.

Dynamic Clamp:

This is a relatively new technique where you use a computer to calculate the current to be injected into a cell based on the voltage recorded at the cell. This allows us to: -create very complicated protocols -simulate synaptic conductances (rather than currents that are independent of the voltage of the cell) -couple two neurons using virtual synapses -simulate a neuron on the computer and connect it to a real neuron -simulate ion channel conductances. We use the dynamic clamp to measure phase response curves of neurons (PRCs). This is a dynamical measure of a cell where we measure how much a synaptic input modulates the timing of an action potential in a periodically firing neuron. PRCs are extremely useful for predicting how a change, such as the increase or decrease in a particular ion channel density, could affect a network of neurons.

Optical Imaging:

Patch clamp is limited to recording from one or two cells at a time. Optical imaging allows for the recording from hundreds of cells simultaneously. Particular classes of calcium dyes allow us to load cells with the dye and measure the change in intracellular calcium concentrations that occurs with cellular activity. We have been able to measure activity of the slices during seizures. In this movie you can see a large activation of the superficial layers of the hippocampus just at the onset of the seizure. We think this reflects the large activation of the inhibitory population at the onset of the seizure.

Neuron Modeling:

Different regions of the brain produce different kinds of epileptiform activity. One region of the hippocampus, the CA3, produces short bursts of activity which we liken to the clinical interictal bursts while a neighboring region, the CA1, can produce full fledged long lasting seizures. This work can be seen on my Small World Networks page. We have hypothesized that the difference in the wiring of the two regions results in the differences in their two behaviors. By generating large networks of model neurons and adjusting the connectivity of the network, we could reproduce both behaviors. We are now trying to extend this work to understand how inhibitory cells change or even control the dynamics of seizure onset.

Here in this section are some lab related information.

Personal tools